Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493663

RESUMO

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Assuntos
Oryza , Oryza/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Germinação/genética , Pólen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferases , Nucleotídeos Cíclicos/metabolismo
2.
Plant Reprod ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351414

RESUMO

KEY MESSAGE: Two pollen-preferential thaumatin-like proteins show both common and distinctive expression profiles. Precocious expression of one of them drastically disturbs timely deposition and dissolution of callose during microsporogenesis, leading to microspore death. Thaumatin-like proteins (TLPs), members of the pathogenesis-related protein family 5 (PR-5), are involved in plant defenses against biotic and abiotic stresses through antifungal activity and enhanced tolerance. Accordingly, studies on TLPs have focused on their responses to various pathogens and stresses and on engineering agronomically valuable crops that can be cultivated in suboptimal environments. On the other hand, the role of TLP members in plant development and their genetic regulation remains largely unexplored. Recently, we reported that the generative cell internalization after pollen mitosis I, an essential pollen patterning step for the nonmotile sperm cell delivery through a pollen tube, depends on STICKY GENERATIVE CELL which suppresses callose deposition in the nascent generative cell and interacts with a germline cell preferential GCTLP1 in Arabidopsis. Here, we additionally identified GCTLP2 which is similarly expressed in the germline cells. We generated various transgenic lines and examined their expressions and phenotypes to elucidate GCTLP functions during pollen development. Expression profiles suggest two GCTLP proteins may have common but also distinctive roles during pollen development. Importantly, ectopic expression analyses show that precocious expression of GCTLP2 severely disturbs the timely deposition and degradation of callose during microsporogenesis which is essential to produce viable microspores. Therefore, our study broadens the knowledge of TLP function and callose regulation for successful pollen development in Arabidopsis.

3.
Plant J ; 106(1): 228-244, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458909

RESUMO

In flowering plants, double fertilization between male and female gametophytes, which are separated by distance, largely depends on the unique pattern of the male gametophyte (pollen): two non-motile sperm cells suspended within a tube-producing vegetative cell. A morphological screen to elucidate the genetic control governing the strategic patterning of pollen has led to the isolation of a sticky generative cell (sgc) mutant that dehisces abnormal pollen with the generative cell immobilized at the pollen wall. Analyses revealed that the sgc mutation is specifically detrimental to pollen development, causing ectopic callose deposition that impedes the timely internalization and differentiation of the generative cell. We found that the SGC gene encodes the highly conserved domain of unknown function 707 (DUF707) gene that is broadly expressed but is germline specific during pollen development. Additionally, transgenic plants co-expressing fluorescently fused SGC protein and known organelle markers showed that SGC localizes in the endoplasmic reticulum, Golgi apparatus and vacuoles in pollen. A yeast two-hybrid screen with an SGC bait identified a thaumatin-like protein that we named GCTLP1, some homologs of which bind and/or digest ß-1,3-glucans, the main constituent of callose. GCTLP1 is expressed in a germline-specific manner and colocalizes with SGC during pollen development, indicating that GCTLP1 is a putative SGC interactor. Collectively, our results show that SGC suppresses callose deposition in the nascent generative cell, thereby allowing the generative cell to fully internalize into the vegetative cell and correctly differentiate as the germline progenitor, with the potential involvement of the GCTLP1 protein, during pollen development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucanos/metabolismo , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucanos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pólen/fisiologia
4.
Plant J ; 101(3): 590-603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610057

RESUMO

Sexual reproduction in flowering plants relies on the production of haploid gametophytes that consist of germline and supporting cells. During male gametophyte development, the asymmetric mitotic division of an undetermined unicellular microspore segregates these two cell lineages. To explore genetic regulation underlying this process, we screened for pollen cell patterning mutants and isolated the heterozygous myb81-1 mutant that sheds ~50% abnormal pollen. Typically, myb81-1 microspores fail to undergo pollen mitosis I (PMI) and arrest at polarized stage with a single central vacuole. Although most myb81-1 microspores degenerate without division, a small fraction divides at later stages and fails to acquire correct cell fates. The myb81-1 allele is transmitted normally through the female, but rarely through pollen. We show that myb81-1 phenotypes result from impaired function of the GAMYB transcription factor MYB81. The MYB81 promoter shows microspore-specific activity and a MYB81-RFP fusion protein is only expressed in a narrow window prior to PMI. Ectopic expression of MYB81 driven by various promoters can severely impair vegetative or reproductive development, reflecting the strict microspore-specific control of MYB81. Our data demonstrate that MYB81 has a key role in the developmental progression of microspores, enabling formation of the two male cell lineages that are essential for sexual reproduction in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores Genéricos de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Linhagem da Célula , Haploidia , Mitose , Fenótipo , Pólen/genética , Pólen/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética
5.
Rice (N Y) ; 11(1): 28, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29687350

RESUMO

BACKGROUND: Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. RESULTS: We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. CONCLUSION: Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.

6.
Plant J ; 92(6): 1092-1105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031033

RESUMO

Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Nucléolo Celular/metabolismo , Mutação , Proteínas Nucleares/genética , Óvulo Vegetal/embriologia , Óvulo Vegetal/genética , Precursores de RNA/genética , Estabilidade de RNA , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética
7.
Plant Reprod ; 29(4): 291-300, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27796586

RESUMO

KEY MESSAGE: Rice microspore-promoters. Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.


Assuntos
Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Arabidopsis/crescimento & desenvolvimento , Genes Reporter , Mitose , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Transgenes
8.
Plant Mol Biol ; 92(1-2): 71-88, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27356912

RESUMO

Microspore production using endogenous developmental programs has not been well studied. The main limitation is the difficulty in identifying genes preferentially expressed in pollen grains at early stages. To overcome this limitation, we collected transcriptome data from anthers and microspore/pollen and performed meta-expression analysis. Subsequently, we identified 410 genes showing preferential expression patterns in early developing pollen samples of both japonica and indica cultivars. The expression patterns of these genes are distinguishable from genes showing pollen mother cell or tapetum-preferred expression patterns. Gene Ontology enrichment and MapMan analyses indicated that microspores in rice are closely linked with protein degradation, nucleotide metabolism, and DNA biosynthesis and regulation, while the pollen mother cell or tapetum are strongly associated with cell wall metabolism, lipid metabolism, secondary metabolism, and RNA biosynthesis and regulation. We also generated transgenic lines under the control of the promoters of eight microspore-preferred genes and confirmed the preferred expression patterns in plants using the GUS reporting system. Furthermore, cis-regulatory element analysis revealed that pollen specific elements such as POLLEN1LELAT52, and 5659BOXLELAT5659 were commonly identified in the promoter regions of eight rice genes with more frequency than estimation. Our study will provide new sights on early pollen development in rice, a model crop plant.


Assuntos
Oryza/metabolismo , Pólen/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Regiões Promotoras Genéticas/genética
9.
Plant J ; 87(2): 188-201, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121542

RESUMO

In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin-celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6-1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)-dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6-1 during male meiosis and pollen mitosis I using fluorescent MT-markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6-1 mutants as a valuable tool for the investigation of augmin-dependent MT nucleation and dynamics in plant cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Microtúbulos/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Pólen/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Meiose/fisiologia , Mitose/fisiologia , Pólen/fisiologia , Reprodução/genética , Reprodução/fisiologia
10.
Plant J ; 82(6): 1018-1029, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25976549

RESUMO

The THO/TREX complex mediates transport of nascent mRNAs from the nucleus towards the cytoplasm in animals, and has a role in small interfering RNA-dependent processes in plants. Here we describe five mutant alleles of Arabidopsis thaliana THO2, which encodes a core subunit of the plant THO/TREX complex. tho2 mutants present strong developmental defects resembling those in plants compromised in microRNA (miRNA) activity. In agreement, not only were the levels of siRNAs reduced in tho2 mutants, but also those of mature miRNAs. As a consequence, a feedback mechanism is triggered, increasing the amount of miRNA precursors, and finally causing accumulation of miRNA-targeted mRNAs. Yeast two-hybrid experiments and confocal microscopy showed that THO2 does not appear to interact with any of the known miRNA biogenesis components, but rather with the splicing machinery, implying an indirect role of THO2 in small RNA biogenesis. Using an RNA immunoprecipitation approach, we found that THO2 interacts with miRNA precursors, and that tho2 mutants fail to recruit such precursors into the miRNA-processing complex, explaining the reduction in miRNA production in this mutant background. We also detected alterations in the splicing pattern of genes encoding serine/arginine-rich proteins in tho2 mutants, supporting a previously unappreciated role of the THO/TREX complex in alternative splicing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
11.
New Phytol ; 206(1): 255-267, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25442716

RESUMO

Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery.


Assuntos
Arabidopsis/genética , Pectinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citoplasma/metabolismo , Glucanos/metabolismo , Mutagênese Insercional , Pólen/genética , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Polinização
12.
Proc Natl Acad Sci U S A ; 111(51): 18393-8, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489100

RESUMO

Angiosperm reproduction is characterized by alternate diploid sporophytic and haploid gametophytic generations. Gametogenesis shares similarities with that of animals except for the formation of the gametophyte, whereby haploid cells undergo several rounds of postmeiotic mitosis to form gametes and the accessory cells required for successful reproduction. The mechanisms regulating gametophyte development in angiosperms are incompletely understood. Here, we show that the nucleoporin Nup88-homolog MOS7 (Modifier of Snc1,7) plays a crucial role in mitosis during both male and female gametophyte formation in Arabidopsis thaliana. Using a mutagenesis screen, we identify the mos7-5 mutant allele, which causes ovule and pollen abortion in MOS7/mos7-5 heterozygous plants, and preglobular stage embryonic lethality in homozygous mos7-5 seeds. During interphase, we show that MOS7 is localized to the nuclear membrane but, like many nucleoporins, is associated with the spindle apparatus during mitosis. We detect interactions between MOS7 and several nucleoporins known to control spindle dynamics, and find that in pollen from MOS7/mos7-5 heterozygotes, abortion is accompanied by a failure of spindle formation, cell fate specification, and phragmoplast activity. Most intriguingly, we show that following gamete formation by MOS7/mos7-5 heterozygous spores, inheritance of either the MOS7 or the mos7-5 allele by a given gamete does not correlate with its respective survival or abortion. Instead, we suggest a model whereby MOS7, which is highly expressed in the Pollen- and Megaspore Mother Cells, enacts a dosage-limiting effect on the gametes to enable their progression through subsequent mitoses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Células Germinativas/crescimento & desenvolvimento , Mitose/fisiologia , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/genética , Microtúbulos/fisiologia , Mutação
13.
Plant Reprod ; 27(1): 47-58, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550073

RESUMO

Promoters can direct gene expression specifically to targeted tissues or cells. Effective with both crop species and model plant systems, these tools can help researchers overcome the practical obstacles associated with transgenic protocols. Here, we identified promoters that allow one to target the manipulation of gene expression during pollen development. Utilizing published transcriptomic databases for rice, we investigated the promoter activity of selected genes in Arabidopsis. From various microarray datasets, including those for anthers and pollen grains at different developmental stages, we selected nine candidate genes that showed high levels of expression in the late stages of rice pollen development. We named these Oryza sativa late pollen-specific genes. Their promoter regions contained various cis-acting elements that could be responsible for anther-/pollen-specific expression. Promoter::GUS-GFP reporters were constructed and introduced into Arabidopsis plants. Histochemical GUS staining revealed that six of the nine rice promoters conferred strong GUS expression that was restricted to the anthers in Arabidopsis. Further analysis showed that although the GUS signals were not detected at the unicellular stage, they strengthened in the bicellular or tricellular stages, peaking at the mature pollen stage. This paralleled their transcriptomic profiles in rice. Based on our results, we proposed that these six rice promoters, which are active in the late stages of pollen formation in the dicot Arabidopsis, can aid molecular breeders in generating new varieties of a monocot plant, rice.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Pólen/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/crescimento & desenvolvimento , Proteínas Recombinantes , Análise de Sequência de DNA , Transgenes
14.
Plant Reprod ; 27(1): 7-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24146312

RESUMO

Arabidopsis Fused kinase TWO-IN-ONE (TIO) controls phragmoplast expansion through its interaction with the Kinesin-12 subfamily proteins that anchor the plus ends of interdigitating microtubules in the phragmoplast midzone. Previous analyses of loss-of-function mutants and RNA interference lines revealed that TIO positively controls both somatic and gametophytic cell cytokinesis; however, knowledge of the full spectrum of TIO functions during plant development remains incomplete. To characterize TIO functions further, we expressed TIO and a range of TIO variants under control of the TIO promoter in wild-type Arabidopsis plants. We discovered that TIO-overexpressing transgenic lines produce enlarged pollen grains, arising from incomplete cytokinesis during male meiosis, and show sporophytic abnormalities indicative of polyploidy. These phenotypes arose independently in TIO variants in which either gametophytic function or the ability of TIO to interact with Kinesin-12 subfamily proteins was abolished. Interaction assays in yeast showed TIO to bind to the AtNACK2/TETRASPORE, and plants doubly homozygous for kinesin-12a and kinesin-12b knockout mutations to produce enlarged pollen grains. Our results show TIO to dominantly inhibit male meiotic cytokinesis in a dosage-dependent manner that may involve direct binding to a component of the canonical NACK-PQR cytokinesis signaling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Citocinese/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Genes Dominantes/genética , Cinesinas/genética , Cinesinas/metabolismo , Meiose/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutagênese Insercional , Fenótipo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Pólen/citologia , Pólen/enzimologia , Pólen/genética , Pólen/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
15.
Plant J ; 72(2): 308-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22709276

RESUMO

The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO-IN-ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP-tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast-associated kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, as TIO-interacting proteins and determine TIO-Kinesin-12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin-12 subfamily members mainly through the C-terminal ARM repeat domain, but with a contribution from the N-terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citocinese , Microtúbulos/metabolismo , Motivos de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Fluorescência Verde , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Modelos Biológicos , Mutação , Fenótipo , Pólen/citologia , Pólen/enzimologia , Pólen/genética , Pólen/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
16.
Plant Signal Behav ; 6(3): 416-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21364317

RESUMO

Asymmetric cell division is a universal strategy to generate diverse cell types necessary for patterning and proliferation of all eukaryotes. The development of haploid male gametophytes (pollen grains) in flowering plants is a remarkable example in which division asymmetry governs the functional specialization and germline differentiation essential for double fertilization. The male gametophyte is patterned via two mitotic divisions resulting in three highly differentiated daughter cells at maturity, a vegetative cell and two sperm cells. The first asymmetric division segregates a unique male germ cell from an undetermined haploid microspore and is executed in an elaborate sequence of cellular events. However the molecular mechanisms governing the division asymmetry in microspores are poorly understood. Recently we studied the phenotype of sidecar pollen (scp) mutants in detail, and demonstrated a requirement of SCP for both the correct timing and orientation of microspore division. SCP is a microspore-specific member of the LOB/AS2 domain family (LBD27/ASL29) showing that a plant-specific regulator plays a key role in oriented division of polarized microspores. Identification of SCP will serve as a new platform to further explore the largely unknown molecular networks regulating division asymmetry in microspores that establishes the male germline in flowering plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular/fisiologia , Flores/citologia , Flores/metabolismo , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos
17.
Plant Cell ; 23(1): 94-110, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21278126

RESUMO

The phospholipase A(2) (PLA(2)) superfamily of lipolytic enzymes is involved in a number of essential biological processes, such as inflammation, development, host defense, and signal transduction. Despite the proven involvement of plant PLA(2)s in many biological functions, including senescence, wounding, elicitor and stress responses, and pathogen defense, relatively little is known about plant PLA(2)s, and their genes essentially remain uncharacterized. We characterized three of four Arabidopsis thaliana PLA(2) paralogs (PLA(2)-ß, -γ, and -δ) and found that they (1) are expressed during pollen development, (2) localize to the endoplasmic reticulum and/or Golgi, and (3) play critical roles in pollen development and germination and tube growth. The suppression of PLA(2) using the RNA interference approach resulted in pollen lethality. The inhibition of pollen germination by pharmacological PLA(2) inhibitors was rescued by a lipid signal molecule, lysophosphatidyl ethanolamine. Based on these results, we propose that plant reproduction, in particular, male gametophyte development, requires the activities of the lipid-modifying PLA(2)s that are conserved in other organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Germinação , Fosfolipases A2/metabolismo , Pólen/crescimento & desenvolvimento , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/enzimologia , Lisofosfolipídeos/metabolismo , Mutação , Fosfolipases A2/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Pólen/genética , Pólen/ultraestrutura , Interferência de RNA , RNA de Plantas/genética
18.
Plant J ; 64(5): 839-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105930

RESUMO

Cellular patterning and differentiation in plants depend on the balance of asymmetric and symmetric divisions. Patterning of the male gametophyte (pollen grains) in flowering plants requires asymmetric division of the microspore followed by a symmetric division of the germ cell to produce three highly differentiated cells: a single vegetative cell and two sperm cells. In Arabidopsis sidecar pollen (scp) mutants a proportion of microspores first divide symmetrically, and then go on to produce 'four-celled' pollen with an extra vegetative cell; however, details of the timing and origin of phenotypic defects in scp and the identity of the SCP gene have remained obscure. Comparative analysis of the original hypomorphic scp-1 allele and a T-DNA-induced null allele, scp-2, revealed that in the absence of SCP, microspores undergo normal nuclear positioning, but show delayed entry into mitosis, increased cell expansion and alterations in the orientation of nuclear division. We identified the SCP gene to encode a male gametophyte-specific LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES 2-like (LBD/ASL) protein that is expressed in microspore nuclei in a tightly regulated phase-specific manner. Therefore, our study demonstrates that the correct patterning of male gametophyte depends on the activity of a nuclear LBD/ASL family protein that is essential for the correct timing and orientation of asymmetric microspore division.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Mitose , Pólen/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Fenótipo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Pólen/genética
19.
Plant Signal Behav ; 5(5): 614-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404559

RESUMO

Microtubule-reporter plants expressing green fluorescent protein-α-TUBULIN fusion protein (GFP-TUA6) in male gametophytic cells of tobacco and Arabidopsis provide new tools for studying the native organization of microtubule (MT) arrays during reproductive development. These plants reveal unique features of gametophytic MT arrays including a basket-like cortical MT array in polarized microspores at interphase, an asymmetric spindle and curved phragmoplast MTs at microspore division and an assembly of bundled cortical MTs during germ cell morphogenesis. The application of these MT-reporter plants has been demonstrated by RNAi-mediated knockdown of the microtubule-associated protein TMBP200, the tobacco orthologue of the conserved MAP215/Dis1 family protein. The double transgenic lines display defects in nuclear positioning, division asymmetry and cytokinesis that are associated with striking defects in spindle and phragmoplast position and organization. This study reveals native and altered MT arrays in unprecedented detail and clarifies the essential functions of MAP215/Dis1 protein function in successive steps in male germline establishment. Such gametophytic MT-reporter lines should accelerate studies of the dynamic regulation of MT arrays by microtubule associated proteins and other effectors during male gametophyte development.


Assuntos
Microtúbulos/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sobrevivência Celular , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas , Pólen/citologia , /metabolismo
20.
J Exp Bot ; 61(4): 969-81, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022922

RESUMO

The haploid microspore division during pollen development in flowering plants is an intrinsically asymmetric division which establishes the male germline for sexual reproduction. Arabidopsis gem1 mutants lack the male germline as a result of disturbed microspore polarity, division asymmetry, and cytokinesis and represent loss-of-function mutants in MOR1/GEM1, a plant orthologue of the conserved MAP215/Dis1 microtubule associated protein (MAP) family. This provides genetic evidence for the role of MAP215/Dis1 in the organization of gametophytic microtubule arrays, but it has remained unknown how microtubule arrays are affected in gem1 mutant microspores. Here, novel male gametophytic microtubule-reporter Nicotiana tabacum plants were constructed, expressing a green fluorescent protein-alpha-TUBULIN fusion protein (GFP-TUA6) under the control of a microspore-specific promoter. These plants allow effective visualization of all major male gametophytic microtubule arrays and provide useful tools to study the regulation of microtubule arrays by MAPs and other effectors. Depletion of TMBP200, a tobacco homologue of MOR1/GEM1 in gametophytic microtubule-reporter plants using microspore-targeted RNA interference, induced defects in microspore polarity, division asymmetry and cytokinesis that were associated with striking defects in phragmoplast position, orientation, and structure. Our observations further reveal a requirement for TMBP200 in gametophytic spindle organization and a novel role in spindle position and orientation in polarized microspores. These results provide direct evidence for the function of MAP215/Dis1 family protein TMBP200 in the organization of microtubule arrays critical for male germline formation in plants.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Especificidade da Espécie , /crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...